

Positronic ${ }^{\circ}$

Low Loss Optical Interconnects for Harsh Environments
Optik-D ${ }^{\text {m }}$ Series
$\mathrm{L}=0.06 \mathrm{~dB}$ (typ)

P

INTRODUCTION

Information in this catalog is proprietary to Positronic and its subsidiaries. Positronic believes the data contained herein to be reliable. Since the technical information is given free of charge, the user employs such information at his own discretion and risk. Positronic Industries assumes no responsibility for results obtained or damages incurred from use of such information in whole or in part.
The following trademarks are owned by Positronic Industries, Inc.: Positronic Industries, Inc.®, Positronic®, Connector Excellence $®$, P+ logo®, PosiBand $®$, PosiShop®, Positronic Global Connector Solutions ${ }^{\text {TM }}$, Global Connector Solutions ${ }^{\text {TM }}$ and Optik-D ${ }^{\text {TM }}$. The color blue as it appears on various connectors is a trademark of Positronic Industries, Inc., Registered in U.S. Patent and Trademark Office.

DIMENSIONAL TOLERANCES

1) ± 0.13 [0.005] for all diameters
2) ± 0.38 [0.015] for all other dimensions

DIMENSIONS ARE IN MILIMETER [INCHES]. ALL DIMENSIONS ARE SUBJECT TO CHANGE.

The Positronic FEDERAL SUPPLY CODE (Cage Code) FOR MANUFACTURERS is 28198

POSITRONIC® IS AN ITAR REGISTERED COMPANY

Products described within this catalog may be protected by the following US patent: \#7,115,002 \#8,944,697 \#9,304,263 OTHER PATENTS PENDING

WHY FIBER?

High bandwidth EMI immune

Reduced wiring bulk and weight Improved data security Safe in explosive environments Minimal losses over long distances Eliminates ground loops Future proof applications

MEDICAL IMAGING
AEROSPACE
OIL \& GAS / MINING
TELECOM

WHY OPTIK-D?

Ultra low insertion loss of 0.06 dB (typical) means less optical power is required, which can mean the difference between an inexpensive LED laser and a costly solid state laser Suitable for harsh environments

More cost effective than D38999 and ARINC 600-based systems Wide availability of accessories
Compatible with other ARINC 801 termini
Hybrid connector allows for combination of optical, power, signal and/or coax in a single connector

CONNECTOR ANATOMY

The low loss performance of this system is based on a tight tolerance guide pin and bushing that act jointly to keep the fiber cores precisely aligned.

The guide pins and bushings are installed at the factory and are required for proper performance.

TECHNICAL SPECIFICATIONS

Description	Value
Type	Multi-mode (Contact technical sales for single mode options)
Ferrule	1.25mm Zirconia Ceramic
Ferrule Holder	Brass alloy
Ferrule Holder Plating	Electroless nickel, 200 microinches
Rear Body \& Crimp Sleeve	Corrosion resistant steel alloy
Passivation	Per SAE-AMS-QQ-PP-35 or ASTM-A-967
Cable Diameter	1.6 to 2.8 [0.065 to 0.110]
End Face Geometry	Meets Telcordia GR-326
Insertion Loss (IL)	0.06 dB (typical)
Minimum Loss	0.004 dB
Maximum Loss	0.08 dB
Return Loss (RL)	$>45 \mathrm{~dB}$
Minimum Return Loss	$>45 \mathrm{~dB}$
Temperature Range	-55° to $125^{\circ} \mathrm{C}$
Locking System	Jackscrews (required)
Plastic Optical Fiber (POF)	The current Optik-D terminus is intended for glass fiber only. For high volume applications, a POF terminus can be provided. Contact technical sales for more information.
Cable Compatibility	Loose jacketed (pull-proof), 1.6 mm to 2.8 mm [0.065 " to 0.110 "] \varnothing Contact technical sales for details regarding tight jacketed and $900 \mu \mathrm{~m}$ cable use

Pull-proof termini allow for the use of the connector without a backshell.

Optik-D Series

EXPLODED VIEW

During the terminus installation process, ensure that the terminus key is aligned with the keyway on the adapter and that the terminus is not rotated during installation.

Although not shown in this view, jackscrews are required for proper performance.

All items shown here except the termini are installed at the factory prior to shipment.

GUIDE PIN \& BUSHING

Guide pins and bushings are mandatory for proper performance and occupy a size 8 contact position as shown here.

The guide pin is installed on the male connector and the bushing is installed on the female connector.

Contact technical sales for options to have the guide pin and bushing installed in a different location.

Red circle indicates location of guide pin or bushing.

TERMINUS DETAIL

Contact technical sales for other types of available termini including those with alternate ferrule diameters and those intended for use with non-pull-proof cable.

The terminus design includes a key that aligns with a corresponding keyway in the rear body of the adapter.

Each terminus ships with a factory-installed dust cover and a crimp sleeve.

DIMENSIONS

Shell Dimensions

Shell Size	Connector Variants	$\begin{gathered} \mathrm{A} \\ \pm 0.38 \end{gathered}$	$\begin{gathered} B \\ \pm 0.38 \end{gathered}$
2	$\begin{gathered} 3 W 3 \\ 3 W K 3 \end{gathered}$	$\begin{gathered} 39.14 \\ {[1.541]} \end{gathered}$	$\begin{gathered} 12.55 \\ {[0.494]} \end{gathered}$
3	5W5 9W4	$\begin{gathered} 53.04 \\ {[2.088]} \end{gathered}$	$\begin{gathered} 12.55 \\ {[0.494]} \end{gathered}$
4	17W5 13W6 8W8	$\begin{gathered} 69.32 \\ {[2.729]} \end{gathered}$	$\begin{gathered} 12.55 \\ {[0.494]} \end{gathered}$
5	24W7	$\begin{gathered} 66.93 \\ {[2.635]} \end{gathered}$	$\begin{gathered} 15.37 \\ {[0.605]} \end{gathered}$

For all related shell dimensions, please consult the Combo-D catalog, C-004.

Assembly Dimensions in Mated Condition

Jackscrews removed for clarity. All dimensions nominal.

Testing performed at Experior Laboratories in Oxnard, CA

TEST	TEST CONDITION	GROUP A ENVIRONMENTAL	GROUP B MECHANICAL PART 1	GROUP C MECHANICAL PART 2	GROUP D MATING ABILITY	REQUIREMENT	RESULTS	VALUE (dB) Typical
Attenuation \& Splicing	TIA/EIA-455-171A	x	x	x	x	$\mathrm{IL}=0.30 \mathrm{~dB}$ Max	Pass	0.06
Return Loss	TIA/EIA-455-107A	x	x	x		$\mathrm{RL}=20 \mathrm{~dB}$ Min	Pass	> 45
Thermal Cycling	TIA-455-3B	x				$\mathrm{CIT}= \pm 0.5 \mathrm{~dB}$ Visual Inspection	Pass	-0.02
Humidity	$\begin{gathered} \text { MIL-DTL-24308G } \\ \text { EIA-364-31B Method IV } \end{gathered}$	x				$\mathrm{CIT}= \pm 0.5 \mathrm{~dB}$ Visual Inspection	Pass	-0.02
Temperature Life	TIA/EIA-455-4C	x				$\mathrm{CIT}= \pm 0.5 \mathrm{~dB}$ Visual Inspection	Pass	0.05
Salt Spray	MIL-DTL-24308G EIA-364-26B Condition B	x				$\mathrm{CIT}= \pm 0.5 \mathrm{~dB}$ Visual Inspection	Pass	-0.04
Thermal Shock	MIL-DTL-24308G EIA-364-32F Method A Condition 1	x				$\mathrm{CIT}= \pm 0.5 \mathrm{~dB}$ Visual Inspection	Pass	-0.01
Vibration	MIL-DTL-24308G EIA-364-28F Condition IV		x			$\mathrm{CIT}= \pm 0.5 \mathrm{~dB}$ Visual Inspection Discontinuity Test	Pass	-0.01
Shock	MIL-DTL-24308G EIA-364-27C Condition E		x			$\mathrm{CIT}= \pm 0.5 \mathrm{~dB}$ Visual Inspection Discontinuity Test	Pass	-0.01
Maintenance Aging	EIA-364-24B			x		Insertion Force = 8 lbs Max	Pass	n/a
Mating Durability	MIL-DTL-24308G EIA-364-09C			x		CIT $= \pm 0.5 \mathrm{~dB}$ Visual Inspection	Pass	0.01
Cable Pull-Out	TIA-455-6B Method 1			x		$\mathrm{CIT}= \pm 0.5 \mathrm{~dB}$ Visual Inspection Pull Force $=53.4$ N for 5 sec	Pass	0.01
Termini Retention Force	EIA-364-38C Method A			x		Pull Force $=53.4$ N for 1 hour Visual Inspection	Pass	n/a
Return Loss	TIA/EIA-455-107A	x	x	x	x	$\mathrm{RL}=20 \mathrm{~dB} \mathrm{Min}$	Pass	> 45

- Test conditions were modified in some cases where the original test condition exceeded the performance limitations of the connector or termini. A full test report is available upon request.
- In order to pass the test plan requirements, the optical discontinuity could not exceed $1 \mu \mathrm{sec}$.
- Testing performed at 1300 nm .

Optik-D Series

PART NUMBER DEFINITION

Specify a part number by selecting an option from each step.

STEP 5 - MOUNTING STYLE

0 - Mounting Hole, Ø 3.05 [0.120].
${ }^{* 2}$ R2 - Bracket, mounting, right angle $\left(90^{\circ}\right)$ metal, swaged to connector with 4-40 thread fixed female jackscrews and alignment bar.
${ }^{* 2}$ R6 - Bracket, mounting, right angle (90°) metal, swaged to connector with 0.120 [3.05] Ø mounting hole and alignment bar.
${ }^{* 2}$ R7 - Bracket, mounting, right angle (90°) metal, swaged to connector with 4-40 threads and alignment bar.
${ }^{* 2}$ R8 - Bracket, mounting, right angle (90°) metal, swaged to connector with 4-40 locknut and alignment bar.
S5-Swaged locknut, 4-40 threads
${ }^{* 2}$ Not for use with Code 0, 1 or 2 in Step 4.

Typical Multi-mode Fiber Anatomy
Many optical cables also have strength members between the jacket and the buffer for greater durability.

6	7	8	9	10
0	T2	S	/AA	
		STEP 8 - 0 - Zinc S - Stainl X - Tin pla Z - Tin pla	STEP 9 - /AA - RoH An RoHS com (backshell not PTIONS passivated. dimpled (ma	STEP 10 - SELECTIVE LOADING Use this step to specify which size 8 positions will NOT be populated with optical termini. I.E. CBF8W8M00ANES-A1A8 would yield an $8 W 8$ with positions A1 and A8 empty so that electrical size 8 contacts can be used in those positions. NMENTAL COMPLIANCE OPTIONS iant ector with stainless steel shells will also have stainless steel hardware ctors only).

STEP 7 - JACKSCREW LOCKING SYSTEMS

0 - Available only when using ' Y ' or ' Z ' backshell in Step 6.
T2 - Fixed Female Jackscrews.
E - Rotating Male Jacksrews. Available only with AN backshell in Step 6.
E2 - Rotating Male Screw Locks.

STEP 6 -BACKSHELLS AND ADDITIONAL ACCESSORIES

0 - None
Y - Backshell, top opening, plastic with rotating male jackscrews. Available in shell size 5 only.
Z - Backshell, top and side opening, robust and extended height, plastic with rotating male jackscrews.
H - Backshell, top opening, metal.
AN - Backshell, lightweight aluminum, nickel finish.
N - Push-on fastener for right angle (90°) mounting brackets.

Gore-Tex ${ }^{\circledR}$ gasket tape can be used as a protective layer between the fiber and the backshell cable clamp to prevent chafing.

2D DRAWINGS \& 3D MODELS

Once you have made a connector selection, contact us if you would
like a 3D model or 2D drawing. If
the drawing does not already exist
in our database, we can create one for you. We also have a variety
of drawings available from our web
site, www.connectpositronic.com.

Optik-D Series

TOOLING

Contact technical sales regarding availability of an LC adapter that allows for use of industry standard LC tooling for termination, inspection and cleaning purposes of the ARINC 801 optical terminus.

This prevents from having to purchase and manage multiple sets of tooling if customers already own LC tooling.

ARINC 801 Termination Kits

This kit contains all of the tools and consumables required for terminating ARINC 801 termini.

Includes:

Epoxy curing oven
200X handheld microscope
Front epoxy injection tool
ARINC 801 crimp tool with die set
ARINC 801 polishing puck
FiberSure multi-purpose optical strip tool
Kevlar shears
Carbide scribe tool
ARINC 801 oven cure adapters
ARINC 801 insertion and removal tools

Tweezers

Permanent marker
Metal 6-inch ruler
Optical cleaning fluid
Optical cleaning wipes
Epo-Tek 353ND epoxy
All necessary polishing films
Debris container

ARINC 801 Inspection \& Cleaning Kits

Designed with input from the commercial air transport industry, this kit is intended to inspect and clean ARINC 801 fiber optic connectors found onboard the aircraft.

Includes:

HD-2 display with video probe
1.25 mm visual fault locator

ARINC 801 cleaning sticks
ARINC 801 cleaning tool
Fiber optic cleaning wipes
Fiber optic grade cleaning fluid
Video probe tips for ARINC 801 and 1.25 mm

ARINC 801 End Face Cleaning Tool

US Conec IBC brand cleaners use a novel dry cleaning strand to gently sweep and lift away contaminates from the end face including:

Arizona road dust	Graphite
Alcohol residue	Salt water residue
Distilled water residue	Hand lotion
Skin oil residue	T-shirt lint
Vegetable residue	

US Conec H125 part number: 12910

Cable Assembly Options

Positronic leverages its experience in high reliability connector manufacturing to build cable assemblies held to high standards. The cable assembly facility is certified to ISO9001 and AS9100. Contact Positronic for your optical cable needs.

Capabilities include:

- Design, development, engineering support and documentation
- Build-to-print
- Product prototyping and first articles
- Testing
- Adherence to IPC-620 standards

Regional Headquarters

Global Headquarters

Positronic | Americas
1325 N Eldon Ave +18006414054
Springfield MO 65803 USA
info@connectpositronic.com

European Headquarters
Positronic | Europe
Z.I. d'Engachies

46, route d'Engachies +33562634491
F-32020 Auch Cedex 9 France
contact@connectpositronic.com

Asian Headquarters

Positronic | Asia
3014A Ubi Rd 1 \#07-01 +65 68421419
Singapore 408703
singapore@connectpositronic.com

Sales Offices

Positronic has local sales representation all over the world. To find the nearest sales office, please visit www.connectpositronic.com/sales

