

HIGH DENSITY CONNECTOR SAVERS / GENDER CHANGERS

DAD Series
Size 22
"Open Entry" or
PosiBand® "Closed Entry"
Contact Design

Connector Saver

DAD series connectors utilize precision machined contacts for strength and durability. The female contact features a rugged open entry design. Female PosiBand closed entry contacts

can be chosen for even higher reliability, see page 1 for details. DAD series connectors can be mated to a connector which would normally experience high numbers of mating cycles. The DAD connector can be easily replaced, "saving" a connector which is not easily replaced. Connectors are available in standard density versions, see page 62.

TECHNICAL CHARACTERISTICS

MATERIALS AND FINISHES:

Insulator: Polyester glass-filled per ASTM D5927,

UL 94V-0.

Contacts: Precision machined copper alloy.

Contact Plating: Gold flash over nickel plate. Other finishes

available upon request.

Interfacial Seal: Fluorosilicone rubber per MIL-R-25988.

Shells: Steel or brass with tin plate; zinc plate, stainless steel passivated. Other materials

stainless steel passivated. Other materia and finishes available upon request.

Low magnetic versions are available, contact Technical Sales.

MECHANICAL CHARACTERISTICS:

Fixed Contacts: Size 22 contacts - male 0.030 inch

[0.76 mm] mating diameter. Female contact: open entry or PosiBand closed

entry design, see page 1 for details.

Connector Saver: Male to female.

Contact Retention: 9 lbs. [40 N].

Shells: Male shells may be dimpled for EMI/ESD

ground paths.

Polarization: Trapezoidally shaped shells.

Mechanical Operations: 500 operations, minimum, per IEC

60512-5 for open entry.

1000 operations, minimum, per IEC

60512-5 for closed entry.

ELECTRICAL CHARACTERISTICS:

Contact Current Rating:

Open Entry Contacts: 5 amperes nominal Closed Entry Contacts, tested per UL 1977:

12 amperes, 2 contacts energized. 10 amperes, 6 contacts energized. 7.5 amperes, 26 contacts energized. 6.5 amperes, 62 contacts energized. 5.0 amperes, 104 contacts energized.

See temperature rise curves on page 2 for details.

Initial Contact Resistance: 0.010 ohms, maximum for open entry

0.005 ohms, maximum for closed entry

Proof Voltage: 1,000 V r.m.s. **Insulation Resistance:** 5 G ohms.

Clearance and

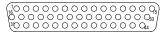
Creepage Distance: 0.042 inch [1.06 mm], minimum.

Working Voltage: 300 V r.m.s.

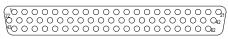
CLIMATIC CHARACTERISTICS:

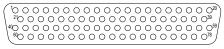
Temperature Range: -55°C to +125°C.

HIGH DENSITY CONNECTOR SAVERS / GENDER CHANGERS

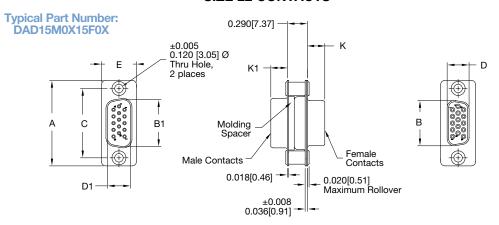

DAD SERIES SIZE 22 CONTACT CONNECTOR SAVER

CONTACT VARIANTS


FACE VIEW OF MALE OR USE MIRROR IMAGE FOR FEMALE



DAD 44



DAD 62 DAD 104 DAD 78

STANDARD SHELL ASSEMBLY DIMENSIONS **SIZE 22 CONTACTS**

CONNECTOR VARIANT SIZES	A ±0.015 [0.38]	B ±0.005 [0.13]	B1 <u>±0.005</u> [0.13]	C ±0.005 [0.13]	D ±0.005 [0.13]	D1 ±0.005 [0.13]	E ±0.015 [0.38]	K ±0.005 [0.13]	K1 ±0.005 [0.13]
15 M	<u>1.213</u> [30.81]		<u>0.666</u> [16.92]	<u>0.984</u> [24.99]		0.329 [8.36]	<u>0.494</u> [12.55]		<u>0.233</u> [5.92]
15 F 15 S	<u>1.213</u> [30.81]	<u>0.643</u> [16.33]		<u>0.984</u> [24.99]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>0.243</u> [6.17]	
26 M	<u>1.541</u> [39.14]		<u>0.994</u> [25.25]	<u>1.312</u> [33.32]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]		<u>0.233</u> [5.92]
26 F 26 S	<u>1.541</u> [39.14]	<u>0.971</u> [24.66]		1.312 [33.32]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>0.243</u> [6.17]	
44 M	2.088 [53.04]		1.534 [38.96]	<u>1.852</u> [47.04]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]		<u>0.230</u> [5.84]
44 F 44 S	2.088 [53.04]	1.511 [38.38]		<u>1.852</u> [47.04]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>0.243</u> [6.17]	
62 M	2.729 [69.32]		<u>2.182</u> [55.42]	2.500 [63.50]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]		<u>0.230</u> [5.84]
62 F 62 S	<u>2.729</u> [69.32]	2.159 [54.84]		2.500 [63.50]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>0.243</u> [6.17]	
78 M	2.635 [66.93]		<u>2.079</u> [52.81]	<u>2.406</u> [61.11]		<u>0.441</u> [11.20]	<u>0.605</u> [15.37]		<u>0.230</u> [5.84]
78 F 78 S	2.635 [66.93]	<u>2.064</u> [52.43]		<u>2.406</u> [61.11]	<u>0.423</u> [10.74]		<u>0.605</u> [15.37]	<u>0.243</u> [6.17]	
104 M	2.729 [69.32]		2.212 [56.18]	2.500 [63.50]		<u>0.503</u> [12.78]	<u>0.668</u> [16.97]		<u>0.230</u> [5.84]
104 F 104 S	2.729 [69.32]	<u>2.189</u> [55.60]		2.500 [63.50]	<u>0.485</u> [12.32]		<u>0.668</u> [16.97]	<u>0.243</u> [6.17]	

HIGH DENSITY CONNECTOR SAVERS / GENDER CHANGERS

ORDERING INFORMATION - CODE NUMBERING SYSTEM

Specify Complete Connector By Selecting An Option From Step 1 Through 9

STE	P 1	2	3	4	5	6	7	8	9	10		11		
EXAMPL	E DAD	15	М	s	Х	15	F	S	Х	/AA		-14		
STEP 1 - BASIC SERIES DAD series STEP 2 - CONNECTOR VARIANT 15, 26, 44, 62, 78, 104 STEP 3 - 1 ST CONNECTOR GENDER M - Male P - Male with interfacial seal *2 STEP 4 - 1 ST CONNECTOR MATING STYLE 0 - Swaged spacer 0.120 [3.05µ] mounting hole S - Swaged spacer 4-40 UNC-2B threads *3 E - Rotating male and female jackscrews (Select 0 in Step 8) *3 E - Rotating male and female polarized jackscrew (Select 0 in Step 8) *3 T - Fixed male and female jackscrews (Select 0 in Step 8) *3 T - Fixed male and female polarized jackscrew (Select 0 in Step 8)									0 - 2 S - 3 X -	NOT legis not le	-14 - 0.0 nicl -15 - 0.0 nicl -15 - 0.0 nicl CONTAC FOR SPI EP 10 - EP CO A - RoHS (TE: If composition is not be used. Expensed. Expensed. Expensed.)	NVIRONIOMPLIA Compliant liance to the required example: Compliant	MENTAL NCE OPTIO	NS IIII == SX
STEP 5 - 1st CONNECTOR SHELL OPTION 0 - Zinc plated. S - Stainless steel, passivated. X - Tin plated. Z - Tin plated and dimpled (male connectors only). *1 Male option available only on connector variant 78. *2 Connector mating style for both connectors must be the same if S is used. If E, E6, T or T6 is used in either Step 4 or 8 the other must be 0. *3 For hardware information, see page 68. *4 Connector variant for both connectors must be the same as in S					ier step		*1 M	**STEP 8 - 2ND CONNECTOR MATING STYLE 0 - Swaged spacer 0.120 [3.05µ] mounting hole S - Swaged spacer 4-40 UNC-2B threads *3 E - Rotating male and female jackscrews (Select 0 in Step 4) *3 E6 - Rotating male and female polarized jackscrew (Select 0 in Step 4) *3 T - Fixed male and female jackscrews (Select 0 in Step 4) *3 T6 - Fixed male and female polarized jackscrew (Select 0 in Step 4) *3 T6 - Fixed male and female polarized jackscrew (Select 0 in Step 4) *4 T - 2ND CONNECTOR GENDER - Male - Male - Male with interfacial seal						

- F Female Professional level open entry contacts
- S Female Industrial level PosiBand closed entry contacts

Military plating options available.

*4 STEP 6 - 2ND CONNECTOR VARIANT

15, 26, 44, 62, 78, 104