

Processing Specification MaxiBridge Crimp Snap In

Attachment I Tools and Cables

ERNI Electronics GmbH

Seestrasse 9 | 73099 Adelberg / Germany | +49 7166 50-0 | www.erni.com

erstellt: Geiger, Tobias

geprüft: Hippler, Christian

Version 3 110 IMS Handbuch

freigegeben: Entenmann, Oliver

22.07.2022

Document # 074729

All rights reserved

DOC-2111-00133

Table of Contents

Notes, Terms and Abbreviations	.3
Wire Selection	
Examples of Wires	
Tools – Used for Evaluation by ERNI	.5
Tools from Other Sources in Conjunction with Customer's Own Qualification	.6
Recommendations for Crimping Parameters	. 6
	Examples of Wires Tools – Used for Evaluation by ERNI Tools from Other Sources in Conjunction with Customer's Own Qualification

References

This document constitutes an integral and essential part of "Processing Specification MaxiBridge Crimp Snap In" Document # 074718

Change History

Change #	Change Description	Date (DE)					
1	Initial release; terminal-specific contents of Processing	11.01.2022					
	Specification MaxiBridge moved here, restructured,						
	modified; separated 0.75 ² .						
2	Separated remaining C1820 portions, i.e. AWG18/20.	10.02.2022					
3	Added information on Insulation Grip Feature (IGF) for	06.07.2022					
	C2022						

1. Notes, Terms and Abbreviations

All processing strictly has to follow ERNI's Processing Specification in order to ensure best results.

ERNI reserves the right to apply changes to this document without prior notice.

The Processing Specification can be obtained by download from <u>www.erni.com</u>. The edition on the website is the latest release and replaces all older versions. Make sure you regularly check there for more recent issues. If there is no Processing Specification available online, please contact your local ERNI representative. This also applies to the Processing Specification's attachments which may change independently from the main Processing Specification.

Products and product information in this document are meant to be informative in nature and do not imply any assurance of performance or product properties, like availability, qualification, approval, or fit for a certain application, if not stated explicitly. For binding information inquire directly with ERNI.

The visualizations in this document are of a schematical nature and have been adjusted for their respective purposes. For exact product representations please refer to product drawings and CAD models, which can be found on our website (<u>www.erni.com</u>) or requested from ERNI directly.

All dimensions are specified in the unit millimeter (mm) if not explicitly stated otherwise.

"," (comma) may be used as a decimal delimiter instead of "." (period) in the course of this document and both are considered equal (2,1 = 2.1).

Six-digit numbers represent ERNI part numbers in this document.

This document's contents have been written in a clear and distinct context. Therefore, the specific product may not be named and PRODUCT or THE PRODUCT are used as placeholders.

MaxiBridge and MaxiBridge QT are independent product families that must not be confused or intermixed and must clearly be distinguished.

Version 3

110 IMS Handbuch

2. Wire Selection

In this document ERNI presents general wire selection criteria and exemplary wires.

The basic criteria are listed in Chapter 5.1 of Processing Specification MaxiBridge.

Based on the fundamental criteria conductor cross-section and insulation outer diameter, each user can evaluate wires on his own, checking and confirming their suitability himself. Some basic dimensions of the contact cavities of the receptacle housings are defined in the main part of the Processing Specification Chapter 5.5 Figure 6 and must be taken into consideration, along with below Table 1, when selecting and evaluating crimped wires.

The critical dimensions to be considered are Terminal Cavity Width (W) and Terminal Cavity Height (H) which are defined in Figure 6 of the main part of the processing specification. All receptacles of the product have a terminal cavity width (W) of 2.06 mm. The terminal cavity height (H) of the single-row receptacle housings is 2.32 mm while that of the dual-row receptacle housings is 2.07 mm. These values are defined as minimum opening sizes and must be respected in evaluating new wire selections especially for wires with insulation outer diameters greater than 1.55 mm.

#	Part no. crimp terminals		Designation of	Nominal conductor cross-section	Range of
'n	10,000 pcs	500 pcs	crimp terminal		Insulation Ø [mm]
1	464762	464763	C2022	AWG 20	1.20 1.55
	544471	544472	C2022 IGF		_"_
2	2 464762 464763		C2022	0.50 mm²	1.20 - 1.55
	544471	544472	C2022 IGF	_"_	-"-
3	464762	464763	C2022	AWG 22	1.20 - 1.55
	544471	544472	C2022 IGF	_"_	-"-
4	464762	464763	C2022	0.35 mm²	1.20 - 1.55
	544471	544472	C2022 IGF	<u>"</u>	_"_
5	464765	464766	C2426	AWG 24	0.9 – 1.15
6	464765	464766	C2426	AWG 26	0.9 – 1.15

MaxiBridge Terminal Compatibility

Table 1

3. Examples of Wires

ERNI has evaluated a limited number of wire types to be used with the Product. Other wire types and constructions are possible, provided the result of such evaluations meets all applicable customer and regulatory requirements for the application.

Version 3

110 IMS Handbuch

Integriertes Management System ERNI

MaxiBridge Processing Specification Attachment 1 Cables en # DOC-2111-00133

Metric Wires

#	Designation	Conductor construction	Insulation	Insulation- Ø [mm]	Manufacturer #	Crimp contact designation	Evaluated bason on
1	Leoni Mocar® 150C 0.5-A	0.5 mm², 19 x 0.19 mm, Cu bare	13Y	1.6	76M00010	C2022	Based on LV214:2010-04
2	Leoni Mocar [®] 150 C 0.35-A	0.35 mm², 7 x 0.26 mm, Cu bare	13Y	1.3	76M00020	C2022	Based on LV214:2010-04
3	Coficab FLR2X-0.35-A	0.35 mm², 7 x 0.26 mm, Cu bare	2X	1.3	FLR2X-0.35-A	C2022	IEC 60352-2 Short program
4	Coficab FHLR9Y-0.35-A	0.35 mm², 7 x 0.26 mm, Cu bare	9Y	1.3	HV9YA03545	C2022	IEC 60352-2 Short program
5	GuG FLR13Y-0,35-A	0.35², 7 x 0.26 mm Cu blank	13Y	1.3	68 534	C2022	IEC 60352-2 Short program

Table 2

AWG Wires (non-metric, American Wire Sizes)

#	Designation	Conductor construction	Insulation	Insulation- Ø [mm]	Manufacturer #	Crimp contact designation	Evaluated based on
1	Medi Kabel UL AWM Style 1007/1569	AWG 20, 7 x 0,32 mm Cu tin-plated	Y	1.8	120207	C2022	Based on IEC 60352-2
2	Leoni LI7Y 0.5/1.4 VZN UL AWM Style 1517	AWG 20, 19 x 0.19 mm Cu tin-plated	7Y	1.4	L45571-C1xx-H60	C2022	IEC 60352-2 Short program
3	Medi Kabel UL AWM Style 1007/1569	AWG 22, 7 x 0.254 mm Cu tin-plated	Y	1.65	120227	C2022	Based on IEC 60352-2
4	Leoni LI7Y 0.34/1.24 VZN UL AWM Style 11378	AWG22, 7 x 0.25 mm Cu tin-plated	7Y	1.27	L45571-P1xx-H60	C2022	Based on IEC 60352-2
5	Leoni LI7Y 1X0,34/1,3 VS UL AWM Style 1517	AWG 22, 7 x 0.25 mm Cu silver-plated	7Y	1.3	V45571-P110-H	C2022	IEC 60352-2 Short program
6	Leoni Li7Y 0.22/1.0 VZN UL AWM Style 11378	AWG 24, 7 x 0.2 mm, Cu tin-plated	7Y	1.0	L45571-B110-H60	C2426	Based on IEC 60352-2
7	Leoni LI7Y 0.15/1.03 VZN UL AWM Style 1671	AWG26, 7 x 0.17 mm, Cu tin-plated	7Y	1.03	L45571-L1xx-H60	C2426	Based on IEC 60352-2
8	Medi Kabel UL AWM Style 1061	AWG 26, 7 x 0.16 mm, Cu tin-plated	Y	1.0	122267	C2426	Based on IEC 60352-2

Table 3

Codes for insulation materials 2X = PE, Y = PVC, 7Y = ETFE, 9Y = PP, 13Y = TPE-E.

The information provided in the tables of this section was taken from the manufacturer's data sheets, are for information only, and is given without guarantee of correctness. Contact the manufacturer and consult manufacturer's data sheets.

4. Tools – Used for Evaluation by ERNI

#	Part no. crimp terminals 10,000 pcs 500 pcs		Designation of crimp terminal	Nominal conductor	Crimping tool (applicator) with mechanical feed	Wearing parts kit for crimping tool (applicator)	Hand crimping tool (extension of tool offerings)
			entrip terminal	cross-section		with mechanical feed	(ontoineiten ei teel enteninge)
1	464762	464763	C2022	AWG 20	817479	817737	952050
	544471	544472	C2022 IGF	_"_	- ¹⁹		
2	2 464762 464763		C2022	0.50 mm²	817479	817737	-
	544471	544472	C2022 IGF	_ 22 _	_"		_"_
3	464762	464763	C2022	AWG 22	817479	817737	952050
	544471	544472	C2022 IGF	_**_	_"_		_"_
4	464762	464763	C2022	0.35 mm²	817479	817737	-
	544471	544472	C2022 IGF	_**_	_"_		_"_
5	464765	464766	C2426	AWG 24	817480	817477	992216
6	6 464765 464766		C2426	AWG 26	817480	817477	992216

Table 4

For tools with pneumatic feed consult with ERNI.

Version 3

erstellt: Geiger, Tobias

110 IMS Handbuch

geprüft: Hippler, Christian

22.07.2022

freigegeben: Entenmann, Oliver

MaxiBridge Processing Specification Attachment 1 Cables en # DOC-2111-00133

5. Tools from Other Sources in Conjunction with Customer's Own Qualification

#	Part no. crimp terminals		terminals Designation of crimp terminal conductor with mechanical feed		Crimping tool (applicator) with mechanical feed	Wearing parts kit for crimping tool (applicator) with mechanical feed	Remarks	
1	464762	464763	C2022	Refer to drawing of tool	TE Connectivity x-2837428-y	TE Connectivity7x-2837428-7	Conductor crimp width 1.57 mm Insulation crimp width 1.80 mm	
	544471	544472	C2022 IGF	_ 23 _		_"		

Table 5

"x" and "y" are placeholders describing various options.

6. Recommendations for Crimping Parameters

Metric Wires (evaluated based on LV 214 issue 2010-04)

	Part no. crimp terminals		-	Designation of Conductor		Conductor crimp		Conductor construction for determining the	Insulation crimp		Min. pull-out
7	10,00	00 pcs	500 pcs	crimp terminal	cross-section	Height [mm]	Width [mm]	conductor crimping	Height [mm] guiding value		force [N]
	464	762	464763	C2022	0.50 mm ²	0.92±0,03	1.63±0,05	0.5 mm ² , 19 x 0.19 mm, Cu bare	Insulation Ø +0.45 ±0.05	1.90 ±0,1	60
	544	471	544472	C2022 IGF	_"_	_"_	_"	_"_	_"_	_"_	_"_
	2 464	762	464763	C2022	0.35 mm²	0.92±0,03	1.63±0,05	7 x 0.26 mm, Cu bare	Insulation Ø +0.45 ±0.05	1.90 ±0,1	50
	544	471	544472	C2022 IGF	_**_	_"	-**_		_"_		

Table 6

Notes at the end of the section apply!

AWG Wires (American Wire Sizes - evaluated based on IEC 60352-2)

#	Part no. crimp terminals		Designation of	Designation of Nominal		Conductor crimp		Insulation crimp		Min. pull-out
	10,000 pcs	500 pcs	crimp terminal cross-section Height [mm]		Width [mm]	determining the conductor crimping parameters	Height [mm] guiding value		force [N]	
1	464762	464763	C2022	AWG 20	1.13±0.03	1.63±0.05	7X0.320 mm, Cu tin-plated	Insulation Ø +0.45 ±0.05	1.90 ±0.1	60
	544471	544472	C2022 IGF	_**_	_"_	_"_	_"_	-"-	-"-	_"_
2	464762	464763	C2022	AWG 22	0.98±0.03	1.63±0.05	AWG 22, 7 x 0.254 mm AWG 22, 7 x 0.25 mm, Cu tin-plated	Insulation Ø +0.45 ±0.05	1.90 ±0.1	40
	544471	544472	C2022 IGF		_**_	_"_	_**_	_**_	_"-	_"_
3	464765	464766	C2426	AWG 24	0.93±0,03	1.45±0,05	AWG 24, 7 x 0.2 mm, Cu tin-plated	Insulation Ø +0.45 ±0.05	1.50 ±0,1	28
4	464765	464766	C2426	AWG 26	0.78±0,03	1.45±0,05	AWG 26, 7 x 0.16 mm, Cu bare	Insulation Ø +0.45 ±0.05	1.50 ±0,1	15

Table 7

Notes for the above tables:

- The tolerances and the resulting spread of the actual insulation diameters of wires are comparatively high and ERNI recommends to check them regularly during production and to make adjustments as necessary.
- The conductor crimping parameters listed above, in particular the conductor crimp height, must be checked and optimized for the respective conductor of each manufacturer, even if the conductor construction is identical. A final optimization of the conductor crimp height may be necessary and is recommended by ERNI.
- The specified parameters were determined with ERNI original tools and are applicable in conjunction with these. All other tools require a complete determination of the crimping

erstellt: Geiger, Tobias geprüft: Hippler, Christian

Version 3

MaxiBridge Processing Specification Attachment 1 Cables en # DOC-2111-00133

parameters and the execution of the respective release cycles required by the customer. ERNI is not liable for the processing results of alternative tools.

- A deeper impressing insulation crimp, i.e. with an addition of < 0.45 mm to the insulation diameter, may also be required in conjunction with certain insulation materials to achieve adequate fixation (insulating grip effectiveness) of the conductor insulation in the insulation crimp (for tests see DIN EN 60352-2 section 5.2.2.2 and DIN EN 60512-16-8) For the above-mentioned wires Coficab FLR2X-0.35-A and Coficab FHLR9Y-0.35-A evidence could be found, that an insulation crimp height of 1.6 +/-0.05 mm is needed to meet the requirements of DIN EN 60352-2 with respect to the insulation grip effectiveness.
- The insulation crimp barrel is not to be regarded a strain relief. It shall firmly enclose the insulating sheath but not penetrate it.
- Min. pull-out force measured with insulation crimp opened. Values in table 6 taken from LV 214 PG 10 issue 2010-04 and table 7 from IEC 60352-2.

erstellt: Geiger, Tobias

Version 3

geprüft: Hippler, Christian

freigegeben: Entenmann, Oliver

22.07.2022